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Abstract
Minimal supersymmetric hybrid inflation based on a minimal Kähler potential
predicts a spectral index ns � 0.98. On the other hand, WMAP three-year
data prefer a central value ns ≈ 0.95. We propose a class of supersymmetric
hybrid inflation models based on the same minimal superpotential but with a
non-minimal Kähler potential. Including radiative corrections using the one-
loop effective potential, we show that the prediction for the spectral index is
sensitive to the small non-minimal corrections, and can lead to a significantly
red-tilted spectrum, in agreement with WMAP.

PACS numbers: 98.80.Cp, 11.30.Pb, 12.60.Jv, 04.65.+e

1. Introduction

Hybrid inflation models [1–3] are examples of small field inflation models which typically
predict an approximately scale invariant spectral index and a very small tensor fraction. For
such models, the WMAP three-year central value for the spectral index is about ns ≈ 0.95
[4], whereas the joint analysis of Ly-α forest power spectrum from the Sloan Digital
Sky Survey, with cosmic microwave background, galaxy clustering and supernovae yields
ns = 0.965 ± 0.012 [5]. Consequently, hybrid inflation models which predict the spectral
index to be too large are now less preferred.

Amongst these models are those based on minimal supersymmetric hybrid inflation,
defined by the superpotential W ,

W = κŜ(φ̂ ˆ̄φ − M2), (1)

where Ŝ is a gauge singlet and φ̂, ˆ̄φ are a conjugate pair of superfields transforming as non-
trivial representations of some gauge group G, together with a minimal Kähler potential

K0 = |S|2 + |φ|2 + |φ̄|2, (2)
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with S, φ, φ̄ being the bosonic components of the superfields. The gauge singlet S is a natural
candidate for the inflaton in this model. During inflation, the theory is in a false vacuum where
〈φ〉 = 〈φ̄〉 = 0 and 〈S〉 �= 0, driving inflation. Inflation ends when the field value of the inflaton
S falls below some critical value which corresponds to a tachyonic instability for 〈φ〉 and/or
〈φ̄〉. Inflation ends by a phase transition to the true supersymmetric minimum, with φ and φ̄

getting equal non-zero vacuum expectation values (vevs) 〈φ〉 = 〈φ̄〉 = M whereas 〈S〉 = 0 (or
O(m3/2) in broken supersymmetry). In this minimal model, the vacuum expectation values
(vevs) 〈φ〉 and 〈φ̄〉 break G to some subgroup H. If φ, φ̄ break, e.g. Pati–Salam or SO(10),
topological defects such as cosmic strings and/or monopoles are generated after inflation. In
order to avoid the monopole problem, one can extend superpotential to so-called shifted or
smooth inflation [6]; but here we shall restrict ourselves to the minimal W above.

The theory defined above in equations (1) and (2) defines the minimal supersymmetric
F-term hybrid inflation model, which we briefly revise in section 2. On the other hand, there
is no symmetry that protects the minimal form of the Kähler potential. In this paper, we
study supersymmetric F-term hybrid inflation with non-minimal Kähler potential, including
radiative corrections using the one-loop effective potential, and show that the prediction of
the spectral index is sensitive to such non-minimal effects, which can lead to a significantly
red-tilted spectrum. This is done in section 3.

2. Minimal Kähler potential

In supersymmetric theories based on supergravity (sugra), there is a well-known problem that
η ≈ 1 due to the sugra corrections, thereby violating one of the slow roll conditions. The
slow-roll parameters may be defined as

ε = m2
P

2

(
V ′

V

)2

, η = m2
P

(
V ′′

V

)
, (3)

where mP = 2.4 × 1018 GeV is the reduced Planck mass and V ′, V ′′ are respectively the first
and second derivatives of potential with respect to the inflaton field. Sugra corrections typically
induce scalar squared masses of the order of the Hubble constant squared H 2 = V/3m2

P, and
leading therefore to the so-called η problem [2, 7]. It is an interesting fact that the supergravity
potential based on the minimal supersymmetric hybrid inflation theory defined in equations
(1), (2) provides a solution to the η problem since the mass squared of the inflaton when
calculated from the supergravity potential cancels at the tree level [2]. Nevertheless, sugra
corrections will induce quartic and higher order terms in the potential [8].

Therefore, in minimal supersymmetric hybrid inflation the curvature of the potential is
given by the one-loop effective potential, �V1 loop [3]. During inflation when |S| > |Sc| = M ,
the waterfall field φ is held at zero due to having a large positive mass squared, and effectively
during inflation we are left with the potential

V = V min
1 (φ = 0) � κ2M4

(
1 +

S4
R

8m4
P

+ · · ·
)

+ �V1 loop, (4)

where SR = √
2|S|. When SR/M > 1, the one-loop effective potential can be approximated

by �V1 loop � [(κM)4N /(4π2)] ln SR/Q,N being the dimensionality of the representation of
the fields φ, φ̄ and Q is the renormalization scale1. The slow-roll parameters are then given by

η � −δ � −κ2N
8π2

(
mP

SR

)2

, ε � κ2N
(4π)2

δ � |η|, (5)

1 None of the derivatives of �V1 loop depend on the renormalization scale Q, and therefore it would have no effect
on the inflationary predictions.
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Figure 1. Non-Minimal Kähler potential: (a) (left hand side) predicted value of the one-loop
contribution to the spectral index, δ, and (b) (right hand side) predicted value of the spectral index
ns depending on the value of the coupling κ , for different values of κS = 0.02, 0.015, 0.01, 0.005, 0.
(N = 1).

where we have denoted by δ the contribution to η from the effective potential. Hybrid inflation
ends when the value of the inflaton field reaches the critical value, and integrating back the
evolution equations we can obtain the value of the field Ne e-folds before the end of inflation,
which again when SRe/M > 1 can be approximated by SRe � √

NeNκmP/(2π). Given the
value of the field, the amplitude of the primordial spectrum is given by

P
1/2
R � V

V ′

(
H

2πm2
P

)
� 2

√
Ne

3N

(
M

mP

)2

. (6)

The WMAP normalization is P
1/2
R = 4.86 × 10−5, taken at the comoving scale k0 =

0.002 Mpc−1, which corresponds to Ne ≈ 50 [9, 10]. From equation (6) this fixes the
inflationary scale M � 6 × 1015 GeV. And for the spectral index, ns � 1 + 2η − 6ε, we have
the approximated result [3]

ns � 1 − 2δ � 1 − 1

Ne

� 0.98, (7)

for Ne ≈ 50. The tensor to scalar ratio is negligible, with r � 10−4, and also there is no
running in the spectral index, with dns/d ln k � 10−3 [11].

The predicted value of the spectral index deviates from the approximated value
equation (7) for small and large values of κ (see figure 1(b), solid line). For small values
of the coupling κ , the approximation SRe/M > 1 does not hold. Diminishing the coupling
what we have is a flatter potential, with a smaller curvature, so that the last say 50 e-folds
of inflation happens to be quite close to the critical value, giving rise to a practically scale
invariant spectrum. On the other hand, for larger values of the coupling κ , the value SRe

gets larger and closer to the Planck scale, so that the quartic term for the inflaton induced
by the sugra corrections can no longer be neglected. This tends to give a positive curvature
contribution, making the spectrum to turn from red tilted (ns < 1) to blue tilted (ns > 1)

[8]. Therefore, the result in equation (7) can be viewed as the lower bound on the predicted
spectral index, with ns � 0.98, to be compared to the central WMAP three-year central value
of ns ≈ 0.95.
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The latter is the preferred value with no tensor and no cosmic string contributions to the
primordial spectrum. In this kind of models the tensor contribution is typically suppressed,
but we may have a non-negligible contribution of cosmic strings [12], depending on details of
the model. In that case, they cannot contribute more than a 10% to the total, but their effect
on the primordial spectrum translates into larger allowed values for the spectral index, and in
particular in [13] it is shown that allowing a contribution of around 5% of cosmic strings in
the analysis can increase the preferred value for the spectral index up to ns ≈ 0.98.

On the other hand, with no tensor and no cosmic strings, the predicted spectral index can
be lowered by considering a non-minimal Kähler potential, as we shall see in the following.

3. Non-minimal Kähler potential

We now turn to the non-minimal modification of supersymmetric hybrid inflation [14]. We
continue to assume the same minimal superpotential as in equation (1). However, we now
consider a non-minimal Kähler potential2, [16, 17],

K = |S|2 + |φ|2 + |φ̄|2 + κS

|S|4
4m2

P

+ κSφ

|S|2|φ|2
m2

P

+ κSφ̄

|S|2|φ̄|2
m2

P

+ κSS

|S|6
6m4

P

+ · · · . (8)

As we will see below, the inflaton gets now a mass squared proportional to 3κSH
2, with

η � −κS + · · ·, so the first constraint we must impose on our expansion parameters is having
κS < 1, which is just the well-known η problem. In our phenomenological approach, we
consider the coefficients in equation (8) as free parameters, using cosmological observations
to constrain their values. In order to have enough inflation and the spectral index in the
range allowed by observations we will require (see figure 1(b)) κS � 0.02, which is a more
severe constraint than that imposed by the η problem. This sensitivity is an interesting result
in itself, but it does raise the theoretical question of the origin of such small coefficients
multiplying the non-minimal corrections to the Kähler potential. A possible theoretical
motivation for having a canonical Kähler potential with small corrections is provided by the
proposal of Watari and Yanagida [18]. In this paper, they consider the same superpotential
as in our equation (1) and show by imposing a global N = 2 supersymmetry and the usual
U(1)R symmetry that the resulting Kähler potential has a leading order canonical form,
with additional non-minimal corrections arising from radiative corrections with naturally
suppressed coefficients, as we assume here. Therefore, although our present analysis is
mainly motivated by phenomenological considerations, we believe that the canonical form of
the Kähler potential, supplemented by non-minimal corrections with small coefficients, has
also some theoretical motivation.

Assuming the Kähler potential in equation (8) and keeping the relevant terms for inflation
up to O((|S|/mP)

4), we find the potential3

V � κ2M4

(
1 − κS

S2
R

2m2
P

+ γS

S4
R

8m4
P

+ · · ·
)

+ �V1 loop, (9)

where γS = 1 − 7κS/2 + 2κ2
S − 3κSS . Although it seems that we are introducing an infinite

number of arbitrary parameters in the expansion of the Kähler potential, equation (8), we
remark that in the regime where the inflaton field value is well below the Planck mass, the
non-minimal Kähler contributions to the quartic and higher terms for the inflaton have no
effect on the inflationary dynamics and therefore only one parameter, κS , will be relevant for

2 Non-minimal corrections to the Kähler potential have also been considered in D-term hybrid inflation in [15].
3 The non-minimal Kähler only introduces a small correction to the φ squared mass, so that still for values of the
inflaton field |S| > |S|c this is positive and we can set φ = 0 during inflation.
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the inflationary predictions that follow. Note that κS > 0 will be required so that the prediction
for ns is in agreement with WMAP.

The non-minimal Kähler induces now a negative correction to both the first and the second
derivatives of the potential in the inflaton direction:

V ′ � κ2M4

mP

(
−κS

SR

mP
+ γS

S3
R

2m3
P

+
κ2N
8π2

mP

SR

)
, (10)

V ′′ � κ2M4

m2
P

(
−κS + 3γS

S2
R

2m2
P

− κ2N
8π2

m2
P

S2
R

)
. (11)

This correction gives rise to a local minimum and maximum in the potential located at

Smin
R

mP
�

√
2κS

γS

,
Smax

R

mP
�

√
2N
κS

( κ

4π

)
, (12)

which for example for κS � κ � 0.01 gives Smin
R

/
mP � 0.14 and Smax

R

/
mP � 0.01. After

that, for SR < Smax
R we have the standard flat potential with V ′ > 0, suitable for hybrid

inflation, with the field rolling towards the critical value. We have demanded then that we
can get at least 60 − 50 e-folds of inflation, once the field is in that region of the potential
with V ′ > 0, i.e., that SRe � Smax

R . We do not address the question of how the field reaches
SRe in this paper, that is, the problem of the initial conditions for inflation. Here we just
concentrate on the inflationary predictions derived from the potential equation (9), assuming
that we have suitable initial conditions for hybrid inflation to take place. The condition of
having enough inflation, SRe � Smax

R , would give us an upper bound on the possible value of
κS . However, the value of the field at Ne e-folds, SRe, itself depends on the value of κS through
V ′. The contribution from κS tends to decrease V ′ and makes the potential flatter, so that the
corresponding value of SRe decreases and it will stay below Smax

R .
In addition, we have now in equation (9) a mass term for the inflaton field proportional

to κS , and therefore this parameter has to be small enough in order to satisfy the slow-roll
conditions. Taking SR � mP, so that we can neglect the quartic term in the analytical
expression4, we have

η � −κS − δ, (13)

where δ is the contribution from the one-loop effective potential, and again ε � |η|. Therefore,
for slow-roll inflation, |η| < 1, we only require κS < 1. The spectral index is then given by

ns � 1 − 2κS − 2δ. (14)

From the previous analysis with minimal Kähler potential, we could think naively that the
one-loop contribution δ � 0.01, and then we would need for example κS � 0.01 if we want
the spectral index around or below ns ≈ 0.96. However, as previously noted, the non-minimal
Kähler contribution will decrease V ′ which, from equation (6), tends to increase the amplitude
of the curvature perturbation. Thus, in order to keep the WMAP normalization, the scale
of inflation M (i.e. V ) has to decrease accordingly. Also, a decrease in V ′ means a smaller
value of the field at 50 e-folds, which implies a larger value of δ ∼ −(κ2N /(8π2))(mP/SR)2.
Therefore, when taking into account the effects of the non-minimal Kähler potential we have
also that the one-loop contribution can be well above the previous upper limit of 0.01. Note
that there is no regime where the one-loop contribution could be neglected with respect to the
non-minimal Kähler one, as far as the approximation SR < mP is fulfilled. This can clearly

4 The quartic term for the inflaton is taken into account in all the numerical calculations, and therefore in the results
presented in the plots.
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be seen in figure 1(a) where we show the one-loop contribution to the spectral index, δ, for
different values of κS . The general trend is that the one-loop effective potential contribution
always remains non-negligible, and besides δ > κS .

In figure 1(b), we plot the prediction for ns as a function of κ for different values of
κS . We can see that even for small values of κ , already for κS � 5 × 10−3, we obtain a
spectral index smaller than what we would have expected only from the non-minimal Kähler
contribution, due to the increase in δ. As the value of κS increases, the effect gets larger and
the spectrum more and more red-tilted. However, for a given value of κS , the prediction for
the spectral index is practically independent of the value of κ , for values of the coupling in the
range [0.001, 0.05].

On the other hand, as we increase the coupling κ , the field value at 50 e-folds also increases
and approaches the Planck scale. The quartic term in the potential then takes over and gives
rise to a blue-tilted spectrum, just as with the minimal Kähler potential. At which value of
κ this effect dominates depends on the value of the quartic coefficient γS , which in turn may
depend now also on the next parameter in the expansion of the non-minimal Kähler potential,
i.e. κSS . Nevertheless, for values of κSS < 1/3, this parameter has no effect on the spectral
index.

In summary, we have argued that a relatively modest extension of minimal supersymmetric
hybrid inflation preserves many of its successful features and also yields a scalar spectral index
which appears to be more consistent with the most recent data, when no tensor and no cosmic
strings contributions are included. For values of the couplings κ ≈ κS ≈ 0.01 we obtain
ns � 0.95, which are consistent with the analysis done also in [13] when including non-
minimal sugra corrections.
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